

International Journal Of Advanced Research In ISSN: 2394-2819 Engineering Technology & Sciences

Email: editor@ijarets.org

October- 2014 Volume 1, Issue-1

www.ijarets.org

The Diophantine Equations of Second and Higher Degree of the Form

3(xy-bx-ay+ab) = n(x+y-a-b) and 3(xy-bx-ay+ab) = n(x+y-a-b) Etc

Hari Kishan, Department of Mathematics D.N. College Meerut (U.P.) Sarita Department of Mathematics DCR University Murthal, Sonipat (Haryana) Megha Rani Department of Mathematics RKGIT Ghaziabad (U.P.)

ABSTRACT:

In this paper some Diophantine equations of second and higher degree of the form 3(xy-bx-ay+ab) = n(x+y-a-b) and 3(xy-bx-ay+ab) = n(x+y-a-b) have been discussed where a, b and c are positive integers.

Key words: Diophantine equation, Egyptian fraction, conjecture and integral solution.

1 INTRODUCTION:

Erdos, P. & Straus, E. G. (1948) formulated the conjecture that for all integers $n \ge 2$, the rational number $\frac{4}{2}$

can be expressed as the sum of three unit fractions. The conjecture states that for every integer $n \ge 4$ there exists positive integers x, y and z such that

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

These unit fractions form an Egyptian fraction representation of the number $\frac{4}{n}$. For example for n=1801, there

exists solution x=451, y=295364 and z=3249004. The restriction on x, y and z to be positive make the problem difficult to solve. Computer searches have verified the truth of the conjecture upto $n \le 10^{14}$ but proving it for all values of n remains an open problem.

The above relation can also be written as 4xyz = n(xy + yz + zx). As a polynomial equation with integer variables, this is a Diophantine equation. For values of n satisfying certain congruence relations, one can find an expansion for 4/n automatically as an instance of a polynomial identity. For instance, whenever $n \equiv 2 \pmod{3}$, 4/n has the expansion

$$\frac{4}{n} = \frac{1}{n} + \frac{1}{(n-2)/3 + 1} + \frac{1}{n((n-2)/3 + 1)}$$

Here each of the three denominators n, (n-2)/3 + 1, and n((n-2)/3 + 1) is a polynomial of n, and each is an integer whenever n is 2 (mod 3).

Jaroma (2004) presented a three term solution with one negative term given by

$$\frac{4}{n} = \frac{1}{(n-1)/2} + \frac{1}{(n+1)/2} - \frac{1}{n(n-1)(n+1)/4}$$

Email: editor@ijarets.org October- 2014 Volume 1, Issue-1 www.ijarets.org

Hari Kishan, Megha Rani and Smiti Agarwal (2011) discussed the Diophantine equations of the form 3xy = n(x + y) and 3xyz = n(xy + yz + zx) etc.

In this paper, the Diophantine equations of second and higher degree of the form 3(xy-bx-ay+ab) = n(x+y-a-b) and 3(xy-bx-ay+ab) = n(x+y-a-b) etc. have been discussed where a, b and n are positive integers. Attempt has been made to obtain some integral solutions of these Diophantine equations.

2 Analysis:

(i) Quadratic Diophantine equation of the form

$$2(xy-bx-ay+ab) = n(x+y-a-b):$$

The given Diophantine equation can be written as

$$\frac{2}{n} = \frac{1}{x-a} + \frac{1}{y-b} \,.$$

The left hand side of the above equation can be written as

$$\frac{2}{n} = \frac{1}{\frac{(n-1)}{2}+1} + \frac{1}{n\left(\frac{(n-1)}{2}+1\right)}.$$

Comparing equations (1) and (2), we get $x = \frac{(n-1)}{2} + 1 + a$ and $y = n(\frac{(n-1)}{2} + 1) + b$. Now if $n \equiv 1 \pmod{2}$

then x and y are positive integers. Thus these are the solutions of the above Diophantine equation. Some solutions of the above Diophantine equation are as follows:

n	Х	У
1	1+a	1+b
3	2+a	6+b
5	3+a	15+b
7	4+a	28+b
9	5+a	45+b
11	6+a	66+b
13	7+a	91+b
15	8+a	120+b
17	9+a	153+b

(ii) Quadratic Diophantine equation of the form

$$3(xy-bx-ay+ab) = n(x+y-a-b):$$

The given Diophantine equation can be written as

$$\frac{3}{n} = \frac{1}{x-a} + \frac{1}{y-b} \,. \tag{3}$$

The left hand side of the above equation can be written as

$$\frac{3}{n} = \frac{1}{\frac{(n-2)}{3}+1} + \frac{1}{n\left(\frac{(n-2)}{3}+1\right)}.$$
...(4)

Email: editor@ijarets.org October- 2014 Volume 1, Issue-1 www.ijarets.org

Comparing equations (3) and (4), we get $x = \frac{(n-2)}{3} + 1 + a$ and $y = n\left(\frac{(n-2)}{3} + 1\right) + b$. Now if $n \equiv 2 \pmod{3}$

...(5)

then x and y are positive integers. Thus these are the solutions of the above Diophantine equation. Some solutions of the above Diophantine equation are as follows:

n	Х	у
5	2+a	10+b
8	3+a	24+b
11	4+a	44+b
14	5+a	70+b
17	6+a	102+b
20	7+a	140+b
23	8+a	184+b
26	9+a	234+b
29	10+a	290+b

(iii) Cubic Diophantine equation of the form

3(xyz - ayz - bxz - cxy + abz + bcx + acy - abc)

$$= n(xy + yz + xz - bx - ay - cy - bz - az - cx + ab + bc + ac)$$

The given Diophantine equation can be written as

$$\frac{3}{n} = \frac{1}{x-a} + \frac{1}{y-b} + \frac{1}{z-c}.$$

The left hand side of the above equation can be written as

$$\frac{3}{n} = \frac{1}{\frac{(n-2)}{3}+1} + \frac{1}{n\left(\frac{(n-2)}{3}+1\right)} = \frac{1}{n} + \frac{1}{\frac{(n-1)}{2}+1} + \frac{1}{n\left(\frac{(n-1)}{2}+1\right)}.$$
...(6)

Comparing equations (5) and (6), we get x = n + a, $y = \frac{(n-1)}{2} + 1 + b$ and $z = n \left(\frac{(n-1)}{2} + 1 \right) + c$. Now if $n \equiv 1 \pmod{2}$ then x, y and z are positive integers. Thus these are the solutions of the above Diophantine

n	X	у	Z
3	3+a	2+b	6+c
5	5+a	3+b	15+c
7	7+a	4+b	28+c
9	9+a	5+b	45+c
11	11+a	6+b	66+c
13	13+a	7+b	91+c
15	15+a	8+b	120+c

Some solutions of the above Diophantine equation are as follows:

(iv) Cubic Diophantine equation of the form

4(xyz - ayz - bxz - cxy + abz + bcx + acy - abc)

= n(xy + yz + xz - bx - ay - cy - bz - az - cx + ab + bc + ac):

equation.

Email: editor@ijarets.org October- 2014 Volume 1, Issue-1

www.ijarets.org

The given Diophantine equation can be written as

$$\frac{4}{n} = \frac{1}{x-a} + \frac{1}{y-b} + \frac{1}{z-c}.$$
 ...(7)

The left hand side of the above equation can be written as

$$\frac{4}{n} = \frac{1}{n} + \frac{1}{\frac{(n-2)}{3}+1} + \frac{1}{n\left(\frac{(n-2)}{3}+1\right)}.$$
...(8)

Comparing equations (7) and (8), we get x = n + a, $y = \frac{(n-2)}{3} + 1 + b$ and $z = n \left(\frac{(n-2)}{3} + 1 \right) + c$. Now if

 $n \equiv 2 \pmod{3}$ then x, y and z are positive integers. Thus these are the solutions of the above Diophantine equation.

n	Х	у	Z
2	2+a	1+b	2+c
5	5+a	2+b	10+c
8	8+a	3+b	24+c
11	11+a	4+b	44+c
14	14+a	5+b	70+c
17	17+a	6+b	102+c
20	20+a	7+b	140+c

Some	solutions	of the	above Di	ophantine	equation	are as	follows
Source	, solutions	or the		opnamme	equation	are as	10110 w 5.

(v) Cubic Diophantine equation of the form

5(xyz - ayz - bxz - cxy + abz + bcx + acy - abc)

$$= n(xy + yz + xz - bx - ay - cy - bz - az - cx + ab + bc + ac):$$

The given Diophantine equation can be written as

$$\frac{5}{n} = \frac{1}{x-a} + \frac{1}{y-b} + \frac{1}{z-c}.$$
 ...(9)

The left hand side of the above equation can be written as

$$\frac{4}{5} = \frac{1}{n} + \frac{1}{\frac{(n-3)}{4} + 1} + \frac{1}{n\left(\frac{(n-3)}{4} + 1\right)}.$$
...(10)

Comparing equations (9) and (10), we get x = n + a, $y = \frac{(n-3)}{4} + 1 + b$ and $z = n \left(\frac{(n-3)}{4} + 1 \right) + c$. Now if

 $n \equiv 3 \pmod{4}$ then x, y and z are positive integers. Thus these are the solutions of the above Diophantine equation.

n	Х	у	Z
3	3+a	1+b	3+c
7	7+a	2+b	14+c
11	11+a	3+b	33+c
15	15+a	4+b	60+c
19	19+a	5+b	95+c
23	23+a	6+b	138+c
27	27+a	7+b	189+c

Some solutions of the above Diophantine equation are as follows:

Copyright@ijarets.org

Email: editor@ijarets.org October- 2014 Volume 1, Issue-1 www.ijarets.org

(vi) Cubic Diophantine equation of the form

$$5(xyz - ayz - bxz - cxy + abz + bcx + acy - abc)$$

= n(xy + yz + xz - bx - ay - cy - bz - az - cx + ab + bc + ac):

The given Diophantine equation can be written as

$$\frac{6}{n} = \frac{1}{x-a} + \frac{1}{y-b} + \frac{1}{z-c} . \tag{11}$$

The left hand side of the above equation can be written as

$$\frac{4}{6} = \frac{1}{n} + \frac{1}{\frac{(n-4)}{5} + 1} + \frac{1}{n\left(\frac{(n-4)}{5} + 1\right)}.$$
 ...(12)

Comparing equations (11) and (12), we get x = n + a, $y = \frac{(n-4)}{5} + 1 + b$ and $z = n \left(\frac{(n-4)}{5} + 1 \right) + c$. Now if

 $n \equiv 4 \pmod{5}$ then x, y and z are positive integers. Thus these are the solutions of the above Diophantine equation.

Some solutions of the above Diophantine equation are as follows:

n	Х	у	Z
4	4+a	1+b	4+c
9	9+a	2+b	18+c
14	14+a	3+b	42+c
19-	19+a	4+b	76+c
24	24+a	5+b	120+c
29	29+a	6+b	174+c
34	34+a	7+b	238+c

3 Concluding Remarks: In this paper the solutions of some quadratic and cubic Diophantine equations of the form 2(xy - bx - ay + ab) = n(x + y - a - b) and 3(xyz - ayz - bxz - cxy + abz + bcx + acy - abc)= n(xy + yz + xz - bx - ay - cy - bz - az - cx + ab + bc + ac) etc. have been obtained These solutions have been shown in the respective tables.

Note: For a=0, b=0 and c =0, the results reduces to the results obtained by Hari Kishan, Megha Rani and Smiti Agarwal (2011).

References:

- 1. Erdos, P. & Straus, E.G. (1950): On a Diophantine equation. Math. Lapok. 1, 192-210.
- 2. Jaroma, J.H. (2004): On expanding 4/n into three Egyptian fractions. Crux Math. 30, 36-37.
- 3. Hari Kishan, Megha Rani and Smiti Agarwal (2011): The Diophantine equations of second and higher degree of the form 3xy=n(x+y) and 3xyz=(xy+yz+zx) etc. Asian Jour. Alg. 4(1), 31-37.